

The fully-passive flapping-foil, a simple and highly efficient alternative as a hydrokinetic turbine

Québec 🕶 🕏

Calcul Québec

K. Gunther, M. Boudreau, G. Dumas Department of Mechanical Engineering, Laval University, Quebec City (Qc), Canada e-mail: kevin.gunther.1@ulaval.ca

Context

• When the heaving and pitching motions are constrained:

→ High energy extraction efficiency demonstrated numerically and experimentally

→ Loss of energy & reliability

Completely constrained experimental prototype Kinsey et al., RE (2010)

$\theta(t)$: pitch motion phase lag

Fully-passive concept

h(t): heave motion

Dynamic equations governing the motion of the foil

Heaving: $F_y = m_h \ddot{h} + D_h \dot{h} + k_h h + (m_\theta x_\theta) (\ddot{\theta} \cos(\theta) + (\dot{\theta})^2 \sin(\theta))$

 $M = I_{\theta}\ddot{\theta} + D_{\theta}\dot{\theta} + k_{\theta}\theta + (m_{\theta}x_{\theta})\ddot{h}\cos(\theta)$ Pitching:

Idealized model

What has been done so far?

- 2D simulations with clean inflow conditions
- Experimental demonstrations

Divergence instability

 $n_{max} = 33.6\%$ and

 $\eta_{max} = 51.0\%$ and no LEV Boudreau et al., RE (2019)

 $(\eta_{max}=31.0\%)$ - Experimental setup of the fully passive hydrokinetic turbine in a channel at the University of Victoria Boudreau et al., JFS (2018)

My M.Sc. project

What is next to investigate? Validate the concept by including:

- 3D effects
- Confinement effects
- Perturbed inflow conditions (shear flow, turbulence)